login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317279
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n-1,k-1)*n^k*n!/k!.
4
1, 1, 0, -9, -32, 225, 3456, 2695, -433152, -4495743, 47872000, 1768142871, 6703534080, -597265448351, -11959736205312, 126058380654375, 9454322092343296, 84694164336894465, -5776865438988238848, -192541299662555831753, 1511905067561779200000, 243338391925401706938081, 3972949090873574466519040
OFFSET
0,4
COMMENTS
a(n) is the n-th term of the inverse Lah transform of the powers of n.
FORMULA
a(n) = n! * [x^n] exp(n*x/(1 + x)).
a(n) = n! * [x^n] Product_{k>=1} exp(-n*(-x)^k).
a(n) = (-1)^(n+1) * n * n! * Hypergeometric1F1([1-n], [2], n) with a(0) = 1.
a(n) = (-1)^(n+1) * n! * LaguerreL(n-1, 1, n) with a(0) = 1. - G. C. Greubel, Mar 09 2021
MAPLE
A317279:= n -> `if`(n=0, 1, (-1)^(n+1)*n!*simplify(LaguerreL(n-1, 1, n), 'LaguerreL'));
seq(A317279(n), n = 0..30); # G. C. Greubel, Mar 09 2021
MATHEMATICA
Join[{1}, Table[Sum[(-1)^(n-k) Binomial[n-1, k-1] n^k n!/k!, {k, n}], {n, 22}]]
Table[n! SeriesCoefficient[Exp[n x/(1 + x)], {x, 0, n}], {n, 0, 22}]
Table[n! SeriesCoefficient[Product[Exp[-n (-x)^k], {k, n}], {x, 0, n}], {n, 0, 22}]
Join[{1}, Table[(-1)^(n+1) n n! Hypergeometric1F1[1-n, 2, n], {n, 22}]]
PROG
(Sage) [1]+[(-1)^(n+1)*factorial(n)*gen_laguerre(n-1, 1, n) for n in (1..30)] # G. C. Greubel, Mar 09 2021
(Magma)
l:= func< n, a, b | Evaluate(LaguerrePolynomial(n, a), b) >;
[1]cat[(-1)^(n+1)*Factorial(n)*l(n-1, 1, n): n in [1..30]]; // G. C. Greubel, Mar 09 2021
(PARI) a(n) = if (n==0, 1, (-1)^(n+1)*n!*pollaguerre(n-1, 1, n)); \\ Michel Marcus, Mar 10 2021
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jul 25 2018
STATUS
approved