login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293145 a(n) = n! * [x^n] exp(n*x/(1 - x)). 5
1, 1, 8, 99, 1696, 37225, 997056, 31535371, 1150303232, 47538819729, 2195314048000, 112032721984051, 6261138045038592, 380309520560089081, 24946892219825709056, 1757549042234670166875, 132356128415391650676736, 10610067001068927596601889, 902057202129607760380428288 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..356

Index entries for sequences related to Laguerre polynomials

FORMULA

a(n) = n! * [x^n] Product_{k>=1} exp(n*x^k).

a(n) ~ exp(n/phi - n) * phi^(2*n) * n^n / 5^(1/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 01 2017

a(n) = n! * Sum_{k=1..n} n^k * binomial(n-1,k-1)/k! for n > 0. - Seiichi Manyama, Feb 03 2021

a(n) = n! * LaguerreL(n-1, 1, -n) with a(0) = 1. - G. C. Greubel, Feb 23 2021

MATHEMATICA

Table[n! SeriesCoefficient[Exp[n x/(1 - x)], {x, 0, n}], {n, 0, 18}]

Table[n! SeriesCoefficient[Product[Exp[n x^k], {k, 1, n}], {x, 0, n}], {n, 0, 18}]

Join[{1}, Table[Sum[n^k n!/k! Binomial[n - 1, k - 1], {k, n}], {n, 1, 18}]]

Join[{1}, Table[n n! Hypergeometric1F1[1 - n, 2, -n], {n, 1, 18}]]

Table[If[n==0, 1, n!*LaguerreL[n-1, 1, -n]], {n, 0, 20}] (* G. C. Greubel, Feb 23 2021 *)

PROG

(PARI) {a(n) = if(n==0, 1, n!*sum(k=1, n, n^k*binomial(n-1, k-1)/k!))} \\ Seiichi Manyama, Feb 03 2021

(PARI) a(n) = if (n, n! * pollaguerre(n-1, 1, -n), 1); \\ Michel Marcus, Feb 23 2021

(Sage) [1 if n==0 else factorial(n)*gen_laguerre(n-1, 1, -n) for n in (0..20)] # G. C. Greubel, Feb 23 2021

(Magma) [n eq 0 select 1 else Factorial(n)*Evaluate(LaguerrePolynomial(n-1, 1), -n): n in [0..20]]; // G. C. Greubel, Feb 23 2021

CROSSREFS

Main diagonal of A253286.

Cf. A000262, A052857, A052897, A255806, A277372.

Sequence in context: A050919 A341965 A230343 * A305919 A286841 A316870

Adjacent sequences:  A293142 A293143 A293144 * A293146 A293147 A293148

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Oct 01 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 12:20 EDT 2022. Contains 353833 sequences. (Running on oeis4.)