|
|
A356440
|
|
Expansion of e.g.f. ( Product_{k>0} 1/(1 - (k * x)^k)^(1/k) )^(1/(1-x)).
|
|
3
|
|
|
1, 1, 8, 99, 2444, 101450, 7045194, 701736966, 97147459184, 17505366041880, 4005462950166600, 1128394974054308400, 384386423684496873672, 155497732356686080354968, 73718160600338917089657216, 40462026280443230503858113240
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
a(0) = 1; a(n) = Sum_{k=1..n} A356437(k) * binomial(n-1,k-1) * a(n-k).
|
|
PROG
|
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-(k*x)^k)^(1/k))^(1/(1-x))))
(PARI) a356437(n) = n!*sum(k=1, n, sigma(k, k)/k);
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a356437(j)*binomial(i-1, j-1)*v[i-j+1])); v;
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|