login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A305919 a(n) = n! * [x^n] 1/(2 - exp(x))^n. 1
1, 1, 8, 99, 1704, 37625, 1014348, 32300359, 1186399952, 49376357109, 2296400723220, 118031059900523, 6643848377509368, 406471060412884753, 26856124898028246044, 1905791887135240982415, 144563460111417997403040, 11673024609379676114380877, 999663240630210837032231460 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..350

N. J. A. Sloane, Transforms

FORMULA

a(n) = [x^n] Sum_{k>=0} binomial(n+k-1,k)*k!*x^k/Product_{j=1..k} (1 - j*x).

a(n) = Sum_{k=0..n} Stirling2(n,k)*binomial(n+k-1,k)*k!.

a(n) ~ n! * c * ((1 + r)*(1 + 2*r))^n / sqrt(n), where r = 0.83396464300847173543462486902082695770239626958539665435270954340119... is the root of the equation (2 + 1/r) * (1 + r*LambertW(-exp(-1/r)/r)) = 1 and c = 0.2588776071955716556407380321640061828295625169467779943611... - Vaclav Kotesovec, Dec 15 2019

MATHEMATICA

Table[n! SeriesCoefficient[1/(2 - Exp[x])^n, {x, 0, n}], {n, 0, 18}]

Table[SeriesCoefficient[Sum[Binomial[n + k - 1, k] k! x^k/Product[1 - j x, {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 18}]

Table[Sum[StirlingS2[n, k] Binomial[n + k - 1, k] k!, {k, 0, n}], {n, 0, 18}]

CROSSREFS

Cf. A000670, A005649, A053492, A226513, A226515.

Sequence in context: A341965 A230343 A293145 * A286841 A316870 A181034

Adjacent sequences:  A305916 A305917 A305918 * A305920 A305921 A305922

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Jun 14 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 17:47 EDT 2022. Contains 353993 sequences. (Running on oeis4.)