login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305922
Expansion of e.g.f. log(1 + 2*x/(exp(x) + 1)).
1
0, 1, -2, 5, -20, 109, -738, 5991, -56760, 614601, -7486670, 101330635, -1508641140, 24503026989, -431137315434, 8169513007215, -165859346028656, 3591802533860497, -82644488286784326, 2013441061219406739, -51777972823724776620, 1401611202556240950645, -39838169568923591411810
OFFSET
0,3
COMMENTS
Logarithmic transform of A036968.
EXAMPLE
E.g.f.: A(x) = x - 2*x^2/2! + 5*x^3/3! - 20*x^4/4! + 109*x^5/5! - 738*x^6/6! + ...
MAPLE
a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n)-add(a(j)*j*
t(n-j)*binomial(n, j), j=1..n-1)/n))(i-> i*euler(i-1, 0))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 04 2018
MATHEMATICA
nmax = 22; CoefficientList[Series[Log[1 + 2 x/(Exp[x] + 1)], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = n EulerE[n - 1, 0] - Sum[k Binomial[n, k] (n - k) EulerE[n - k - 1, 0] a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 22}]
a[n_] := a[n] = 2 (1 - 2^n) BernoulliB[n] - Sum[k Binomial[n, k] 2 (1 - 2^(n - k)) BernoulliB[n - k] a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 22}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jun 14 2018
STATUS
approved