login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. log(1 + 2*x/(exp(x) + 1)).
1

%I #7 Dec 04 2018 20:23:45

%S 0,1,-2,5,-20,109,-738,5991,-56760,614601,-7486670,101330635,

%T -1508641140,24503026989,-431137315434,8169513007215,-165859346028656,

%U 3591802533860497,-82644488286784326,2013441061219406739,-51777972823724776620,1401611202556240950645,-39838169568923591411810

%N Expansion of e.g.f. log(1 + 2*x/(exp(x) + 1)).

%C Logarithmic transform of A036968.

%H Alois P. Heinz, <a href="/A305922/b305922.txt">Table of n, a(n) for n = 0..430</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Genocchi_number">Genocchi number</a>

%H <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers</a>

%e E.g.f.: A(x) = x - 2*x^2/2! + 5*x^3/3! - 20*x^4/4! + 109*x^5/5! - 738*x^6/6! + ...

%p a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n)-add(a(j)*j*

%p t(n-j)*binomial(n, j), j=1..n-1)/n))(i-> i*euler(i-1, 0))

%p end:

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Dec 04 2018

%t nmax = 22; CoefficientList[Series[Log[1 + 2 x/(Exp[x] + 1)], {x, 0, nmax}], x] Range[0, nmax]!

%t a[n_] := a[n] = n EulerE[n - 1, 0] - Sum[k Binomial[n, k] (n - k) EulerE[n - k - 1, 0] a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 22}]

%t a[n_] := a[n] = 2 (1 - 2^n) BernoulliB[n] - Sum[k Binomial[n, k] 2 (1 - 2^(n - k)) BernoulliB[n - k] a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 22}]

%Y Cf. A036968, A296837, A296838, A305711.

%K sign

%O 0,3

%A _Ilya Gutkovskiy_, Jun 14 2018