login
A296727
Expansion of e.g.f. arcsinh(x)/(1 - x).
2
0, 1, 2, 5, 20, 109, 654, 4353, 34824, 324441, 3244410, 34795485, 417545820, 5536151685, 77506123590, 1144330385625, 18309286170000, 315366695240625, 5676600514331250, 106667957800963125, 2133359156019262500, 45229212438054868125, 995042673637207098750, 22696937952367956440625
OFFSET
0,3
FORMULA
E.g.f.: log(x + sqrt(1 + x^2))/(1 - x).
a(n) ~ n! * log(1 + sqrt(2)). - Vaclav Kotesovec, Dec 20 2017
EXAMPLE
arcsinh(x)/(1 - x) = x/1! + 2*x^2/2! + 5*x^3/3! + 20*x^4/4! + 109*x^5/5! + ...
MAPLE
a:=series(arcsinh(x)/(1 - x), x=0, 24): seq(n!*coeff(a, x, n), n=0..23); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
nmax = 23; CoefficientList[Series[ArcSinh[x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Log[x + Sqrt[1 + x^2]]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
PROG
(PARI) first(n) = x='x+O('x^n); Vec(serlaplace(asinh(x)/(1 - x)), -n) \\ Iain Fox, Dec 19 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 19 2017
STATUS
approved