login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. arcsinh(x)/(1 - x).
2

%I #13 Mar 27 2019 10:04:55

%S 0,1,2,5,20,109,654,4353,34824,324441,3244410,34795485,417545820,

%T 5536151685,77506123590,1144330385625,18309286170000,315366695240625,

%U 5676600514331250,106667957800963125,2133359156019262500,45229212438054868125,995042673637207098750,22696937952367956440625

%N Expansion of e.g.f. arcsinh(x)/(1 - x).

%F E.g.f.: log(x + sqrt(1 + x^2))/(1 - x).

%F a(n) ~ n! * log(1 + sqrt(2)). - _Vaclav Kotesovec_, Dec 20 2017

%e arcsinh(x)/(1 - x) = x/1! + 2*x^2/2! + 5*x^3/3! + 20*x^4/4! + 109*x^5/5! + ...

%p a:=series(arcsinh(x)/(1 - x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # _Paolo P. Lava_, Mar 27 2019

%t nmax = 23; CoefficientList[Series[ArcSinh[x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!

%t nmax = 23; CoefficientList[Series[Log[x + Sqrt[1 + x^2]]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!

%o (PARI) first(n) = x='x+O('x^n); Vec(serlaplace(asinh(x)/(1 - x)), -n) \\ _Iain Fox_, Dec 19 2017

%Y Cf. A001818, A009628, A081358, A186763, A281964, A296726.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Dec 19 2017