login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305923
Expansion of e.g.f. exp(x)/(1 - log(1 + x) - log(1 + x)^2).
1
1, 2, 6, 21, 105, 580, 4332, 33173, 333057, 3249334, 41175698, 485901669, 7470988137, 102962077608, 1870375878472, 29342124588357, 617978798588225, 10818920340476010, 260570216908845406, 5009431835664474101, 136578252867673635369, 2844357524328057280332, 87134882338620095240484
OFFSET
0,2
COMMENTS
Binomial transform of A005444.
Sequence is signed: first negative term is a(61).
LINKS
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(n,k)*Stirling1(k,j)*j!*Fibonacci(j+1).
a(n) ~ (-1)^n * n! * exp(exp(-phi) - phi^2) / (sqrt(5) * (1 - exp(-phi))^(n+1)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 26 2019
EXAMPLE
E.g.f.: A(x) = 1 + 2*x/1! + 6*x^2/2! + 21*x^3/3! + 105*x^4/4! + 580*x^5/5! + 4332*x^6/6! + ...
MAPLE
a:=series(exp(x)/(1-log(1+x)-log(1+x)^2), x=0, 23): seq(n!*coeff(a, x, n), n=0..22); # Paolo P. Lava, Mar 26 2019
MATHEMATICA
nmax = 22; CoefficientList[Series[Exp[x]/(1 - Log[1 + x] - Log[1 + x]^2), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Sum[Binomial[n, k] StirlingS1[k, j] j! Fibonacci[j + 1], {j, 0, k}], {k, 0, n}], {n, 0, 22}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jun 14 2018
STATUS
approved