login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. exp(x)/(1 - log(1 + x) - log(1 + x)^2).
1

%I #7 Mar 27 2019 03:53:23

%S 1,2,6,21,105,580,4332,33173,333057,3249334,41175698,485901669,

%T 7470988137,102962077608,1870375878472,29342124588357,617978798588225,

%U 10818920340476010,260570216908845406,5009431835664474101,136578252867673635369,2844357524328057280332,87134882338620095240484

%N Expansion of e.g.f. exp(x)/(1 - log(1 + x) - log(1 + x)^2).

%C Binomial transform of A005444.

%C Sequence is signed: first negative term is a(61).

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(n,k)*Stirling1(k,j)*j!*Fibonacci(j+1).

%F a(n) ~ (-1)^n * n! * exp(exp(-phi) - phi^2) / (sqrt(5) * (1 - exp(-phi))^(n+1)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Mar 26 2019

%e E.g.f.: A(x) = 1 + 2*x/1! + 6*x^2/2! + 21*x^3/3! + 105*x^4/4! + 580*x^5/5! + 4332*x^6/6! + ...

%p a:=series(exp(x)/(1-log(1+x)-log(1+x)^2),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # _Paolo P. Lava_, Mar 26 2019

%t nmax = 22; CoefficientList[Series[Exp[x]/(1 - Log[1 + x] - Log[1 + x]^2), {x, 0, nmax}], x] Range[0, nmax]!

%t Table[Sum[Sum[Binomial[n, k] StirlingS1[k, j] j! Fibonacci[j + 1], {j, 0, k}], {k, 0, n}], {n, 0, 22}]

%Y Cf. A000045, A000556, A005444, A005923, A291981.

%K sign

%O 0,2

%A _Ilya Gutkovskiy_, Jun 14 2018