|
|
A305711
|
|
Expansion of e.g.f. exp(2*x/(exp(x) + 1)).
|
|
1
|
|
|
1, 1, 0, -2, -1, 11, 13, -111, -220, 1756, 5051, -39775, -153191, 1215345, 5952668, -48020714, -288569149, 2377190003, 17069110381, -143857868895, -1209439895944, 10435153277620, 101078662547567, -892827447251575, -9834570608359487, 88900938146195601, 1101567283699652888
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
Table of n, a(n) for n=0..26.
Wikipedia, Genocchi number
Index entries for sequences related to Bernoulli numbers
|
|
EXAMPLE
|
exp(2*x/(exp(x) + 1)) = 1 + x - 2*x^3/3! - x^4/4! + 11*x^5/5! + 13*x^6/6! - 111*x^7/7! - 220*x^8/8! + ...
|
|
MAPLE
|
a:=series(exp(2*x/(exp(x)+1)), x=0, 27): seq(n!*coeff(a, x, n), n=0..26); # Paolo P. Lava, Mar 26 2019
|
|
MATHEMATICA
|
nmax = 26; CoefficientList[Series[Exp[2 x/(Exp[x] + 1)], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[k EulerE[k - 1, 0] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 26}]
a[n_] := a[n] = Sum[2 (1 - 2^k) BernoulliB[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 26}]
|
|
CROSSREFS
|
Cf. A036968, A296835, A296836.
Sequence in context: A140316 A295852 A088587 * A158352 A158354 A055459
Adjacent sequences: A305708 A305709 A305710 * A305712 A305713 A305714
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Ilya Gutkovskiy, Jun 08 2018
|
|
STATUS
|
approved
|
|
|
|