login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305712
Polydivisible nonnegative integers whose decimal digits span an initial interval of {0,...,9}.
3
0, 10, 102, 120, 201, 1020, 1200, 2012, 10200, 12000, 12320, 20120, 32120, 102000, 120000, 123204, 321204, 1024023, 1200003, 1232042, 1444023, 2220001, 3212041, 10240232, 12000032, 12320424, 14440232, 32125240, 50165432
OFFSET
0,2
COMMENTS
A number with decimal digit sequence {q_1, ..., q_k} is polydivisible if Sum_{i = 1...m} 10^(m - i) * q_i is a multiple of m for all 1 <= m <= k.
REFERENCES
Matt Parker, Things to make and do in the fourth dimension, 2015, pages 7-9.
MATHEMATICA
polyQ[q_]:=And@@Table[Divisible[FromDigits[Take[q, k]], k], {k, Length[q]}];
normseqs[n_]:=Join@@Permutations/@Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1];
Sort[FromDigits/@Join@@Table[Select[normseqs[n]-1, First[#]>0&&polyQ[#]&], {n, 8}]]
KEYWORD
nonn,base
AUTHOR
Gus Wiseman, Jun 08 2018
STATUS
approved