login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Polydivisible nonnegative integers whose decimal digits span an initial interval of {0,...,9}.
3

%I #5 Jun 09 2018 08:42:48

%S 0,10,102,120,201,1020,1200,2012,10200,12000,12320,20120,32120,102000,

%T 120000,123204,321204,1024023,1200003,1232042,1444023,2220001,3212041,

%U 10240232,12000032,12320424,14440232,32125240,50165432

%N Polydivisible nonnegative integers whose decimal digits span an initial interval of {0,...,9}.

%C A number with decimal digit sequence {q_1, ..., q_k} is polydivisible if Sum_{i = 1...m} 10^(m - i) * q_i is a multiple of m for all 1 <= m <= k.

%D Matt Parker, Things to make and do in the fourth dimension, 2015, pages 7-9.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Polydivisible_number">Polydivisible number</a>

%t polyQ[q_]:=And@@Table[Divisible[FromDigits[Take[q,k]],k],{k,Length[q]}];

%t normseqs[n_]:=Join@@Permutations/@Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];

%t Sort[FromDigits/@Join@@Table[Select[normseqs[n]-1,First[#]>0&&polyQ[#]&],{n,8}]]

%Y Cf. A000670, A030299, A050289, A144688, A156069, A156071, A240763, A305701, A305714, A305715.

%K nonn,base

%O 0,2

%A _Gus Wiseman_, Jun 08 2018