|
|
A356437
|
|
a(n) = n! * Sum_{k=1..n} sigma_k(k)/k.
|
|
3
|
|
|
1, 7, 77, 1946, 84754, 6202524, 636369348, 89979720144, 16431405256656, 3796658174518560, 1077102230236529760, 368915006390671969920, 149873555740938949215360, 71297150722148582901815040, 39244301012876892023553235200
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..15.
|
|
FORMULA
|
E.g.f.: -(1/(1-x)) * Sum_{k>0} log(1 - (k*x)^k)/k.
a(n) ~ n! * n^(n-1). - Vaclav Kotesovec, Aug 07 2022
|
|
MATHEMATICA
|
Table[n! * Sum[DivisorSigma[k, k]/k, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Aug 07 2022 *)
|
|
PROG
|
(PARI) a(n) = n!*sum(k=1, n, sigma(k, k)/k);
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, log(1-(k*x)^k)/k)/(1-x)))
|
|
CROSSREFS
|
Cf. A023887, A356297, A356436, A356440.
Sequence in context: A080492 A342347 A082782 * A107047 A210413 A045485
Adjacent sequences: A356434 A356435 A356436 * A356438 A356439 A356440
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Seiichi Manyama, Aug 07 2022
|
|
STATUS
|
approved
|
|
|
|