

A293144


Number of vertices in a Menger Sponge constructed from a cubic lattice: a(n) = 20*a(n1)  24*A293143(n1).


2



8, 64, 896, 15616, 295808, 5789440, 114790784, 2287878400, 45694209920, 913377753856, 18263504780672, 365237697021184, 7304494763023232, 146087821875273472, 2921739850525976960, 58434664314989709568, 1168692224736473884544
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

a(n) is the number of vertices of a (3^n+1)^3 cubic lattice minus the number of vertices missing for the openings within the sponge. The cubic honeycomb can be constructed by joining 20 cubes of the previous term and subtracting the overlapping vertices of 24 faces (see example).


LINKS

M. F. Hasler, Table of n, a(n) for n = 0..800 (Terms n = 1 .. 768 computed by Colin Barker.)
Eric Weisstein's World of Mathematics, Menger Sponge.
Wikipedia, Menger sponge.
Index entries for linear recurrences with constant coefficients, signature (32,275,724,480).


FORMULA

From Colin Barker, Oct 02 2017, adjusted for initial a(0) = 8 by M. F. Hasler, Oct 16 2017: (Start)
G.f.: 8*(1  24*x + 131*x^2  156*x^3) / ((1  x)*(1  3*x)*(1  8*x)*(1  20*x)).
a(n) = 64*(3/133 + 3^(1+n)/85 + 11*8^(n1)/35 + 9*20^n/323).
a(n) = 32*a(n1)  275*a(n2) + 724*a(n3)  480*a(n4) for n > 3.
(End)
a(n) = (64*(133*3^(n+1) + 63*4^n*5^(n+1) + 3553*8^(n1) + 255)) / 11305.


EXAMPLE

For a(0) we start with a simple cube, having a(0) = 8 corners.
For a(1), the cube is subdivided into 27 smaller cubes forming a lattice of 64 vertices. 7 cubes are removed (but the cubes have no facial or internal vertices to remove until the next stage).
Twenty a(1) cubes, each with 64 vertices, are then combined to form the lattice for a(2). The overlapped vertices of 24 faces (each with 16 vertices) are removed. Thus a(2) = (20*64)  (24*16) = 1280  384 = 896. The faces of the cubes are the Sierpinski Carpet grid of A293143.


MATHEMATICA

CoefficientList[Series[8 (1  24 x + 131 x^2  156 x^3)/((1  x) (1  3 x) (1  8 x) (1  20 x)), {x, 0, 15}], x] (* Michael De Vlieger, Oct 09 2017 *)


PROG

(PARI) Vec(8*(1  24*x + 131*x^2  156*x^3) / ((1  x)*(1  3*x)*(1  8*x)*(1  20*x)) + O(x^30)) \\ Colin Barker, Oct 09 2017
(PARI) A293144(n)=(255+133*3^(n+1)+63*4^n*5^(n+1)+3553*8^(n1))*64/11305 \\ M. F. Hasler, Oct 16 2017


CROSSREFS

Cf. A293143, A034472.
Sequence in context: A133054 A098560 A087138 * A349266 A111984 A352721
Adjacent sequences: A293141 A293142 A293143 * A293145 A293146 A293147


KEYWORD

nonn,easy


AUTHOR

Steven Beard, Oct 01 2017


EXTENSIONS

Edited to include initial term 8 by M. F. Hasler, Oct 16 2017


STATUS

approved



