login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111984
Expansion of g.f.: A(x) = ( Sum_{n>=0} (2*n+1)*8^n*x^(n*(n+1)/2) )^(1/3).
8
1, 8, -64, 960, -15360, 274432, -5223936, 103604224, -2115993600, 44188631040, -939004514304, 20235083907072, -441102457372672, 9708551114588160, -215436164616683520, 4814308934865944576, -108243166106365722624, 2446764246113433157632
OFFSET
0,2
COMMENTS
Define F(x,q) = Sum_{n>=0} (2*n+1)*q^n*x^(n*(n+1)/2); then F(x,q)^(1/3) is an integer series in x when q = -1 (mod 9) or when q = 0 (mod 3). At q=-1 we have the famous result of Jacobi: F(x,-1)^(1/3) = (1 - 3*x + 5*x^3 - 7*x^6 + 9*x^10 +...)^(1/3) = 1 + Sum_{n>=1} (-1)^n * (x^(n*(3*n-1)/2) + x^(n*(3*n+1)/2) ).
LINKS
FORMULA
Conjecture: a(5*n+4) == 0 (mod 5) (checked up to n = 200). - Peter Bala, Feb 26 2021
EXAMPLE
G.f.: A(x) = 1 + 8*x - 64*x^2 + 960*x^3 - 15360*x^4 + 274432*x^5 - 5223936*x^6 +...
where
A(x)^3 = 1 + 3*8*x + 5*8^2*x^3 + 7*8^3*x^6 + 9*8^4*x^10 + 11*8^5*x^15 + 13*8^6*x^21 + 15*8^7*x^28 + 17*8^8*x^36 + 19*8^9*x^45 + 21*8^10*x^55 +...
MAPLE
seq(coeff(series( ( add((2*n+1)*8^n*x^(n*(n+1)/2), n=0..40) )^(1/3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 05 2019
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Surd[Sum[(2n+1)8^n x^((n(n+1))/2), {n, 0, nn}], 3], {x, 0, nn}], x]] (* Harvey P. Dale, Jul 04 2013 *)
PROG
(PARI) a(n)=polcoeff(sum(k=0, sqrtint(2*n+1), (2*k+1)*8^k*x^(k*(k+1)/2)+x*O(x^n))^(1/3), n)
(Sage) [( (sum((2*n+1)*8^n*x^(n*(n+1)/2) for n in (0..40)) )^(1/3) ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Nov 05 2019
CROSSREFS
Cf. A111983 (g.f. A(x)^3), A111985 (g.f. A(x)^(1/4)).
Sequence in context: A087138 A293144 A349266 * A352721 A278145 A287230
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 25 2005
STATUS
approved