login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293146
a(n) = n! * [x^n] exp(x/(1 - n*x)).
5
1, 1, 5, 73, 2161, 108101, 8201701, 878797165, 126422091713, 23514740267401, 5492576235204901, 1574136880033408241, 543143967119720304625, 222106209904092987888013, 106221716052645457812866501, 58741017143127754662557082901, 37194600833984874761008613195521
OFFSET
0,3
LINKS
FORMULA
a(n) ~ BesselI(1, 2) * sqrt(2*Pi) * n^(2*n-1/2) / exp(n). - Vaclav Kotesovec, Oct 01 2017
a(n) = n! * Sum_{k=1..n} n^(n-k) * binomial(n-1,k-1)/k! for n > 0. - Seiichi Manyama, Feb 03 2021
MAPLE
S:=series(exp(x/(1-n*x)), x, 31):
seq(coeff(S, x, n)*n!, n=0..30); # Robert Israel, Oct 01 2017
MATHEMATICA
Table[n! SeriesCoefficient[Exp[x/(1 - n x)], {x, 0, n}], {n, 0, 16}]
Join[{1}, Table[n! SeriesCoefficient[Product[Exp[n^k x^(k + 1)], {k, 0, n}], {x, 0, n}], {n, 1, 16}]]
Join[{1}, Table[Sum[n^(n - k) n!/k! Binomial[n - 1, k - 1], {k, n}], {n, 1, 16}]]
Join[{1}, Table[n^n (n - 1)! Hypergeometric1F1[1 - n, 2, -1/n], {n, 1, 16}]]
PROG
(PARI) {a(n) = if(n==0, 1, n!*sum(k=1, n, n^(n-k)*binomial(n-1, k-1)/k!))} \\ Seiichi Manyama, Feb 03 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 01 2017
STATUS
approved