login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301387
E.g.f. A(x) satisfies: [x^n] A(x)^n = (2*n - 1) * [x^(n-1)] A(x)^n for n>=1.
2
1, 1, 5, 73, 2185, 108881, 8012941, 809101945, 106751544593, 17777715999265, 3641538959077141, 899203905438721961, 263360370074829490585, 90266849931865728247153, 35797787561010642901996445, 16266200052343102435435467481, 8396767484613064218299219696161, 4887270793881840799764234723049025, 3185975842406919756361250644217366053
OFFSET
0,3
LINKS
FORMULA
E.g.f. A(x) satisfies: A(x) = exp( x * (A(x) + x*A'(x)) / (A(x) - x*A'(x)) ).
a(n) ~ c * 2^n * (n!)^2, where c = 0.321697697353832218399635... (is the same as for A301388). - Vaclav Kotesovec, Mar 21 2018
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 73*x^3/3! + 2185*x^4/4! + 108881*x^5/5! + 8012941*x^6/6! + 809101945*x^7/7! + 106751544593*x^8/8! + 17777715999265*x^9/9! + ...
The table of coefficients in A(x)^n begins:
n=1: [(1), (1), 5/2, 73/6, 2185/24, 108881/120, 8012941/720, ...];
n=2: [1, (2), (6), 88/3, 638/3, 10288/5, 1110424/45, ...];
n=3: [1, 3, (21/2), (105/2), 2979/8, 140241/40, 3288981/80, ...];
n=4: [1, 4, 16, (248/3), (1736/3), 79768/15, 2744776/45, ...];
n=5: [1, 5, 45/2, 725/6, (20185/24), (60555/8), 12237185/144, ...];
n=6: [1, 6, 30, 168, 1170, (51744/5), (569184/5), ...]; ...
in which the coefficients in parenthesis are related by
1 = 1*(1); 6 = 3*(2); 105/2 = 5*(21/2); 1736/3 = 7*(248/3); 60555/8 = 9*(20185/24); 569184/5 = 11*(51744/5); ...
illustrating: [x^n] A(x)^n = (2*n - 1) * [x^(n-1)] A(x)^n.
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is an integer power series in x satisfying
log(A(x)) = x * (1 + x*A'(x)/A(x)) / (1 - x*A'(x)/A(x));
explicitly,
log(A(x)) = x + 2*x^2 + 6*x^3 + 22*x^4 + 94*x^5 + 474*x^6 + 2974*x^7 + 24630*x^8 + 271710*x^9 + 3799570*x^10 + ... + A301388(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=1); for(i=1, n, A = exp( x*(A + x*A')/(A - x*A' +x*O(x^n)) ) ); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A301388.
Sequence in context: A144682 A293146 A321189 * A096987 A096538 A355122
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 20 2018
STATUS
approved