login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301385
O.g.f. A(x) satisfies: A(x) = x * (1 + 3*x*A'(x)) / (1 + x*A'(x)).
2
1, 2, 6, 22, 94, 474, 2974, 24630, 271710, 3799570, 63378806, 1208997078, 25736584670, 602485683530, 15356903176110, 423032451327510, 12518043710674878, 395909541133928226, 13325077980379707238, 475466006418129789206, 17926802213221278261726, 712095926927360739006522, 29722097317161256669118142, 1300445348644716445771904502
OFFSET
1,2
COMMENTS
If G(x) = x*(1 + r*x*G'(x)) / (1 + x*G'(x)), then G(x) has negative coefficients if r < t, and consists entirely of nonnegative coefficients if r > t, where t = 2.8453449032025472172778433620905570976610361149... (A301389).
O.g.f. equals the logarithm of the e.g.f. of A301386.
The e.g.f. G(x) of A301386 satisfies: [x^n] G(x)^(-n) = (2*n - 3) * [x^(n-1)] G(x)^(-n) for n>=1.
LINKS
FORMULA
O.g.f. A(x) satisfies: [x^n] exp( -n * A(x) ) = (2*n - 3) * [x^(n-1)] exp( -n * A(x) ) for n>=1.
From Vaclav Kotesovec, Mar 20 2018: (Start)
a(n) ~ c * 2^n * n! / n^2, where c = 0.0618315205229178422646235585879521967924163...
a(n) ~ c * 2^n * n^(n - 3/2) / exp(n), where c = 0.15498863760617284891466946263730170095444214... (End)
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 6*x^3 + 22*x^4 + 94*x^5 + 474*x^6 + 2974*x^7 + 24630*x^8 + 271710*x^9 + 3799570*x^10 + ...
where
A(x) = x*(1 + 3*x*A'(x)) / (1 + x*A'(x)).
RELATED SERIES.
A'(x) = 1 + 4*x + 18*x^2 + 88*x^3 + 470*x^4 + 2844*x^5 + 20818*x^6 + 197040*x^7 + 2445390*x^8 + 37995700*x^9 + ...
exp(A(x)) = 1 + x + 5*x^2/2! + 49*x^3/3! + 745*x^4/4! + 16001*x^5/5! + 472621*x^6/6! + 19659025*x^7/7! + 1211940689*x^8/8! + ... + A301386*x^n/n! + ...
MATHEMATICA
Rest[CoefficientList[AsymptoticDSolveValue[{A[x] == x*(1 + 3*x*A'[x])/(1 + x*A'[x]), A[1] == 1}, A[x], {x, 0, 20}], x]] (* Requires Mathematica version 11.3 or later *) (* Vaclav Kotesovec, Mar 20 2018 *)
PROG
(PARI) {a(n) = my(A=x); for(i=0, n, A = x*(1 + 3*x*A')/(1 +x*A' +x*O(x^n)) ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 20 2018
STATUS
approved