login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153854 Nonzero coefficients of g.f.: A(x) = G(G(G(G(x)))) where G(x) = x + G(G(x))^3 is the g.f. of A153851. 4
1, 4, 42, 594, 9827, 179928, 3545637, 73988631, 1618178067, 36832568283, 868184365137, 21113629246953, 528282055072773, 13569770211307323, 357215846155083585, 9623529095387448543, 265025641890780905892 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..17.

FORMULA

G.f.: A(x) = Sum_{n>=0} a(2n+1)*x^(2n+1) = G(G(G(G(x)))) where G(x) is the g.f. of A153851.

G.f.: A(x) = F(F(x)) where F(x) is the g.f. of A153852.

EXAMPLE

G.f.: A(x) = x + 4*x^3 + 42*x^5 + 594*x^7 + 9827*x^9 +...

A(x)^3 = x^3 + 12*x^5 + 174*x^7 + 2854*x^9 + 51045*x^11 +...

A(x) = G(G(G(G(x)))) where

G(x) = x + x^3 + 6*x^5 + 57*x^7 + 683*x^9 + 9474*x^11 +...

A(x) = H(H(x))) where H(x) = G(G(x)):

H(x) = x + 2*x^3 + 15*x^5 + 165*x^7 + 2213*x^9 + 33693*x^11 +...

PROG

(PARI) {a(n)=local(G=x+O(x^(2*n+1))); for(i=0, n, G=serreverse(x-G^3)); polcoeff(subst(subst(G, x, G), x, subst(G, x, G)), 2*n-1)}

CROSSREFS

Cf. A153851, A153852, A153853, A153850.

Sequence in context: A156440 A151453 A234507 * A216080 A137645 A340939

Adjacent sequences:  A153851 A153852 A153853 * A153855 A153856 A153857

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 21 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 04:38 EST 2021. Contains 349416 sequences. (Running on oeis4.)