login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137645
a(n) = Sum_{k=0..n} C((n-k)*k, k) * C((n-k)*k, n-k).
1
1, 0, 1, 4, 42, 608, 10986, 240492, 6167112, 181154848, 5995624710, 220711502648, 8943846698096, 395588177834784, 18962600075658460, 979198125493716492, 54189002212286942316, 3199366560075461850320, 200730550064907653703510, 13336507142191259122442532, 935401326531455246646557760, 69066745767857553528070539760, 5355032622687046432711489319940
OFFSET
0,4
LINKS
EXAMPLE
The initial terms of this sequence are
a(0) = 1 = 1*1;
a(1) = 0 = 1*0 + 0*1;
a(2) = 1 = 1*0 + 1*1 + 0*1;
a(3) = 4 = 1*0 + 2*1 + 1*2 + 0*1;
a(4) = 42 = 1*0 + 3*1 + 6*6 + 1*3 + 0*1;
a(5) = 608 = 1*0 + 4*1 + 15*20 + 20*15 + 1*4 + 0*1;
a(6) = 10986 = 1*0 + 5*1 + 28*70 + 84*84 + 70*28 + 1*5 + 0*1;
a(7) = 240492 = 1*0 + 6*1 + 45*252 + 220*495 + 495*220 + 252*45 + 1*6 + 0*1; ...
where the triangle of coefficients binomial((n-k)*k, k) begins:
1;
1, 0;
1, 1, 0;
1, 2, 1, 0;
1, 3, 6, 1, 0;
1, 4, 15, 20, 1, 0;
1, 5, 28, 84, 70, 1, 0;
1, 6, 45, 220, 495, 252, 1, 0;
1, 7, 66, 455, 1820, 3003, 924, 1, 0;
1, 8, 91, 816, 4845, 15504, 18564, 3432, 1, 0;
1, 9, 120, 1330, 10626, 53130, 134596, 116280, 12870, 1, 0; ...
and the triangle A060539 of coefficients binomial((n-k)*k, n-k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 2, 1;
0, 1, 6, 3, 1;
0, 1, 20, 15, 4, 1;
0, 1, 70, 84, 28, 5, 1;
0, 1, 252, 495, 220, 45, 6, 1;
0, 1, 924, 3003, 1820, 455, 66, 7, 1;
0, 1, 3432, 18564, 15504, 4845, 816, 91, 8, 1;
0, 1, 12870, 116280, 134596, 53130, 10626, 1330, 120, 9, 1; ...
PROG
(PARI) {a(n)=sum(k=0, n, binomial((n-k)*k, k)*binomial((n-k)*k, n-k))}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A060539.
Sequence in context: A234507 A153854 A216080 * A340939 A355410 A136045
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 31 2008
STATUS
approved