login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x) = 1/((1-x*B(x)^2)*(1-x*C(x)^3)) such that B(x) = 1/((1-x*A(x))*(1-x*C(x)^3)) and C(x) = 1/((1-x*A(x))*(1-x*B(x)^2)) are the g.f.s of A341955 and A341956, respectively.
2

%I #7 Mar 01 2021 11:31:02

%S 1,2,13,99,839,7606,72190,708294,7126305,73125017,762337935,

%T 8051642336,85971106450,926481778388,10064065073450,110080177918855,

%U 1211363817278035,13401851361051323,148978925959605763,1663181275248666597

%N G.f. A(x) satisfies: A(x) = 1/((1-x*B(x)^2)*(1-x*C(x)^3)) such that B(x) = 1/((1-x*A(x))*(1-x*C(x)^3)) and C(x) = 1/((1-x*A(x))*(1-x*B(x)^2)) are the g.f.s of A341955 and A341956, respectively.

%F G.f. A(x) and related series B(x) and C(x) satisfy:

%F (1a) A(x) = 1/((1 - x*B(x)^2)*(1 - x*C(x)^3)),

%F (1b) B(x) = 1/((1 - x*A(x))*(1 - x*C(x)^3)),

%F (1c) C(x) = 1/((1 - x*A(x))*(1 - x*B(x)^2)).

%F (2a) A(x) = B(x)*C(x) * (1 - x*A(x))^2,

%F (2b) B(x) = A(x)*C(x) * (1 - x*B(x)^2)^2,

%F (2c) C(x) = A(x)*B(x) * (1 - x*C(x)^3)^2.

%F (3a) A(x)/(1 - x*A(x)) = B(x)/(1 - x*B(x)^2) = C(x)/(1 - x*C(x)^3) = sqrt(A(x)*B(x)*C(x)),

%F (3b) A(x)*B(x)*C(x) = 1/((1-x*A(x))^2*(1-x*B(x)^2)^2*(1-x*C(x)^3)^2).

%e G.f.: A(x) = 1 + 2*x + 13*x^2 + 99*x^3 + 839*x^4 + 7606*x^5 + 72190*x^6 + 708294*x^7 + 7126305*x^8 + 73125017*x^9 + 762337935*x^10 + ...

%e such that A(x) = 1/((1-x*B(x)^2)*(1-x*C(x)^3)) where

%e B(x) = 1 + 2*x + 11*x^2 + 80*x^3 + 659*x^4 + 5865*x^5 + 54954*x^6 + 534087*x^7 + 5334509*x^8 + 54423368*x^9 + 564713959*x^10 + ...

%e C(x) = 1 + 2*x + 9*x^2 + 61*x^3 + 489*x^4 + 4283*x^5 + 39702*x^6 + 382899*x^7 + 3802403*x^8 + 38618535*x^9 + 399277260*x^10 + ...

%e RELATED SERIES.

%e A(x)*B(x)*C(x) = 1 + 6*x + 45*x^2 + 380*x^3 + 3438*x^4 + 32584*x^5 + 319358*x^6 + 3210482*x^7 + 32921947*x^8 + 343030506*x^9 + ...

%e sqrt(A(x)*B(x)*C(x)) = 1 + 3*x + 18*x^2 + 136*x^3 + 1149*x^4 + 10397*x^5 + 98558*x^6 + 966157*x^7 + 9714366*x^8 + 99631288*x^9 + ...

%e where

%e sqrt(A(x)*B(x)*C(x)) = A(x)/(1-x*A(x)) = B(x)/(1-x*B(x)^2) = C(x)/(1-x*C(x)^3).

%e A(x)^2 = 1 + 4*x + 30*x^2 + 250*x^3 + 2243*x^4 + 21142*x^5 + 206419*x^6 + 2069226*x^7 + 21172635*x^8 + 220227386*x^9 + ...

%e B(x)^2 = 1 + 4*x + 26*x^2 + 204*x^3 + 1759*x^4 + 16126*x^5 + 154266*x^6 + 1522460*x^7 + 15387035*x^8 + 158457396*x^9 + ...

%e C(x)^2 = 1 + 4*x + 22*x^2 + 158*x^3 + 1303*x^4 + 11620*x^5 + 109059*x^6 + 1061358*x^7 + 10612685*x^8 + 108371282*x^9 + ...

%e C(x)^3 = 1 + 6*x + 39*x^2 + 299*x^3 + 2550*x^4 + 23229*x^5 + 221256*x^6 + 2176734*x^7 + 21947076*x^8 + 225589243*x^9 + ...

%o (PARI) {a(n) = my(A=1,B=1,C=1); for(i=1,n,

%o A = 1/((1-x*B^2)*(1-x*C^3) +x*O(x^n));

%o B = 1/((1-x*A^1)*(1-x*C^3) +x*O(x^n));

%o C = 1/((1-x*A^1)*(1-x*B^2) +x*O(x^n)););

%o polcoeff(A,n)}

%o for(n=0,20,print1(a(n),", "))

%Y Cf. A341955 (B(x)), A341956 (C(x)).

%K nonn

%O 0,2

%A _Paul D. Hanna_, Feb 25 2021