login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377532
Expansion of e.g.f. 1/(1 - x^2 * exp(x))^3.
2
1, 0, 6, 18, 180, 1500, 15930, 191646, 2580648, 38683224, 636068430, 11392350090, 220658360076, 4594593295188, 102333126352002, 2427278515815510, 61079333377870800, 1625065147997303856, 45576552142354413078, 1343802083242003570818, 41552482139458105525620
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} k^(n-2*k) * binomial(k+2,2)/(n-2*k)!.
a(n) ~ n! * n^2 / ((1 + LambertW(1/2))^3 * 2^(n+4) * LambertW(1/2)^n). - Vaclav Kotesovec, Oct 31 2024
PROG
(PARI) a(n) = n!*sum(k=0, n\2, k^(n-2*k)*binomial(k+2, 2)/(n-2*k)!);
CROSSREFS
Sequence in context: A077531 A214537 A052634 * A059944 A052139 A354019
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Oct 31 2024
STATUS
approved