login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377534
Expansion of e.g.f. 1/(1 - x * exp(x^2))^3.
2
1, 3, 12, 78, 648, 6300, 72000, 939960, 13749120, 223035120, 3969907200, 76890733920, 1609732776960, 36214043785920, 871131980759040, 22310233170825600, 606026217929932800, 17401756135956192000, 526641334386809241600, 16753142420507766873600
OFFSET
0,2
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k)^k * binomial(n-2*k+2,2)/k!.
a(n) ~ n! * n^2 * 2^(n/2 - 1) / ((1 + LambertW(2))^3 * LambertW(2)^(n/2)). - Vaclav Kotesovec, Oct 31 2024
PROG
(PARI) a(n) = n!*sum(k=0, n\2, (n-2*k)^k*binomial(n-2*k+2, 2)/k!);
CROSSREFS
Sequence in context: A121421 A349884 A108043 * A058561 A058107 A213139
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Oct 31 2024
STATUS
approved