login
A349884
Expansion of Sum_{k>=0} (k * x)^k/(1 + k^2 * x).
3
1, 1, 3, 12, 76, 961, 15407, 221528, 3260936, 80774113, 2462081967, 50963779604, 922244742292, 61063845514113, 2868669700179871, 2019727494212912, -47889136910252848, 461395118866593115713, 5781219348638565771423, -2108738296748190078596084
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * k^(2*n-k).
MATHEMATICA
a[n_] := Sum[If[k == 2*n - k == 0, 1, (-1)^(n - k) * k^(2*n - k)], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Dec 04 2021 *)
PROG
(PARI) a(n, t=2) = sum(k=0, n, (-k^t)^(n-k)*k^k);
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1+k^2*x)))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Dec 03 2021
STATUS
approved