login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349859
Expansion of Sum_{k>=0} k * x^k/(1 + k^2 * x).
4
0, 1, 1, -4, 8, 57, -771, 4168, 22504, -943255, 13349105, -48905364, -3284972544, 117005181841, -2071095992867, -2153841382168, 1791029813641424, -79511121545541327, 1867021096818903489, 8850156160819959100, -3592582141732300745000
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..n} (-k^2)^(n-k) * k.
MATHEMATICA
a[n_] := Sum[If[k == n - k == 0, 1, (-k^2)^(n-k)] * k, {k, 0, n}]; Array[a, 21, 0] (* Amiram Eldar, Dec 03 2021 *)
PROG
(PARI) a(n, s=1, t=2) = sum(k=0, n, (-k^t)^(n-k)*k^s);
(PARI) my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k*x^k/(1+k^2*x))))
CROSSREFS
Sequence in context: A123288 A192200 A063083 * A270399 A269998 A335527
KEYWORD
sign
AUTHOR
Seiichi Manyama, Dec 02 2021
STATUS
approved