The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A349883 Expansion of Sum_{k>=0} (k * x)^k/(1 - k^3 * x). 3
 1, 1, 5, 60, 1242, 41241, 2033683, 141318208, 13262986788, 1624337451945, 252725477615989, 48858277079478156, 11523986801592238046, 3265676705193282018577, 1097336766468309067029991, 432291795385094609190468384, 197690320046319097006619353352 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..227 FORMULA a(n) = Sum_{k=0..n} k^(3*n-2*k). a(n) ~ sqrt(Pi) * (3/2)^(1/2 + 3*n - 3*n/LambertW(3*exp(1)*n/2)) * (n/LambertW(3*exp(1)*n/2))^(1/2 + 3*n - 3*n/LambertW(3*exp(1)*n/2)) / sqrt(1 + LambertW(3*exp(1)*n/2)). - Vaclav Kotesovec, Dec 04 2021 MATHEMATICA a[n_] := Sum[If[k == 3*n - 2*k == 0, 1, k^(3*n - 2*k)], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Dec 04 2021 *) PROG (PARI) a(n, t=3) = sum(k=0, n, k^(t*(n-k)+k)); (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-k^3*x))) CROSSREFS Cf. A031971, A349836, A349901. Sequence in context: A147585 A138215 A207648 * A010793 A180614 A138447 Adjacent sequences:  A349880 A349881 A349882 * A349884 A349885 A349886 KEYWORD nonn AUTHOR Seiichi Manyama, Dec 03 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 05:20 EDT 2022. Contains 356110 sequences. (Running on oeis4.)