login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349863
Expansion of Sum_{k>=0} k^2 * x^k/(1 + k^2 * x).
2
0, 1, 3, -6, -2, 243, -2031, 3796, 187212, -3860139, 36467311, 284357502, -21796446486, 538332144295, -5605176351651, -182065102478856, 12963817679287960, -422751776737348503, 5483284328996107803, 327213964461103956802, -30082452646697648945898
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (-k^2)^(n-k) * k^2.
MATHEMATICA
a[n_] := Sum[If[k == n - k == 0, 1, (-k^2)^(n - k)] * k^2, {k, 0, n}]; Array[a, 21, 0] (* Amiram Eldar, Dec 03 2021 *)
PROG
(PARI) a(n, s=2, t=2) = sum(k=0, n, (-k^t)^(n-k)*k^s);
(PARI) my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k^2*x^k/(1+k^2*x))))
CROSSREFS
Cf. A349852.
Sequence in context: A351232 A372921 A367028 * A306189 A216803 A094118
KEYWORD
sign
AUTHOR
Seiichi Manyama, Dec 02 2021
STATUS
approved