login
A351232
a(n) = floor(A276086(n) / A003415(n)), where A003415 is the arithmetic derivative and A276086 is the primorial base exp-function.
4
3, 6, 2, 18, 1, 10, 1, 5, 6, 90, 1, 50, 8, 18, 7, 450, 5, 250, 15, 75, 86, 2250, 14, 125, 125, 138, 175, 11250, 0, 14, 0, 3, 3, 10, 0, 70, 5, 13, 4, 630, 4, 350, 10, 26, 63, 3150, 7, 125, 58, 262, 140, 15750, 54, 546, 142, 1193, 1270, 78750, 0, 98, 4, 5, 2, 49, 4, 490, 10, 56, 37, 4410, 7, 2450, 94, 133, 137, 1225
OFFSET
2,1
FORMULA
a(n) = floor(A276086(n) / A003415(n)) = floor(A351231(n) / A351230(n)).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A351232(n) = floor(A276086(n) / A003415(n));
CROSSREFS
Cf. A351228 (conjectured to give the positions of zeros from its second term onward).
Sequence in context: A345671 A090774 A147995 * A372921 A367028 A349863
KEYWORD
nonn,base,easy,look
AUTHOR
Antti Karttunen, Feb 05 2022
STATUS
approved