OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..339
FORMULA
a(n) = Sum_{k=0..n} k^(2*(n-k+1)).
a(n) = A234568(n+1) - 1. - Hugo Pfoertner, Dec 04 2021
a(n) ~ sqrt(Pi) * ((n+1)/LambertW(exp(1)*(n+1)))^(5/2 + 2*n - 2*(n+1)/LambertW(exp(1)*(n+1))) / sqrt(1 + LambertW(exp(1)*(n+1))). - Vaclav Kotesovec, Dec 04 2021
G.f.: Sum_{k>=1} x^k/(1 - (k+1)^2 * x). - Seiichi Manyama, Jan 12 2023
MATHEMATICA
a[n_] := Sum[If[k == n - k + 1 == 0, 1, k^(2*(n - k + 1))], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Dec 04 2021 *)
PROG
(PARI) a(n, s=2, t=2) = sum(k=0, n, k^(t*(n-k)+s));
(PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k^2*x^k/(1-k^2*x))))
(PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^k/(1-(k+1)^2*x)))) \\ Seiichi Manyama, Jan 12 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 03 2021
STATUS
approved