login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349882
Expansion of Sum_{k>=0} k^2 * x^k/(1 - k^2 * x).
3
0, 1, 5, 26, 162, 1267, 12343, 145652, 2036148, 33192789, 622384729, 13263528350, 318121600694, 8517247764135, 252725694989611, 8258153081400856, 295515712276222952, 11523986940937975401, 487562536078882116717, 22291094729329088403298
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} k^(2*(n-k+1)).
a(n) = A234568(n+1) - 1. - Hugo Pfoertner, Dec 04 2021
a(n) ~ sqrt(Pi) * ((n+1)/LambertW(exp(1)*(n+1)))^(5/2 + 2*n - 2*(n+1)/LambertW(exp(1)*(n+1))) / sqrt(1 + LambertW(exp(1)*(n+1))). - Vaclav Kotesovec, Dec 04 2021
G.f.: Sum_{k>=1} x^k/(1 - (k+1)^2 * x). - Seiichi Manyama, Jan 12 2023
MATHEMATICA
a[n_] := Sum[If[k == n - k + 1 == 0, 1, k^(2*(n - k + 1))], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Dec 04 2021 *)
PROG
(PARI) a(n, s=2, t=2) = sum(k=0, n, k^(t*(n-k)+s));
(PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k^2*x^k/(1-k^2*x))))
(PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^k/(1-(k+1)^2*x)))) \\ Seiichi Manyama, Jan 12 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 03 2021
STATUS
approved