login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249459
a(n) = Sum_{k=0..n} k^(2*n).
13
1, 1, 17, 794, 72354, 10874275, 2438235715, 762963987380, 317685943157892, 169842891165484965, 113394131858832552133, 92465351109879998121806, 90431265068257318469676710, 104479466717230437574945525959, 140782828210237288756752539959687
OFFSET
0,3
LINKS
FORMULA
E.g.f.: Sum_{n>=0} exp(n^2*x).
a(n) ~ exp(2)/(exp(2)-1) * n^(2*n).
G.f.: Sum_{k>=0} (k^2 * x)^k/(1 - k^2 * x). - Seiichi Manyama, Dec 03 2021
MATHEMATICA
Table[Sum[k^(2*n), {k, 1, n}], {n, 1, 20}]
Table[n!*SeriesCoefficient[Sum[Exp[k^2*x], {k, 1, n}], {x, 0, n}], {n, 1, 20}]
PROG
(PARI) a(n)=n!*polcoeff(sum(k=0, n, exp(k*x+x*O(x^n))^k), n);
for(n=1, 20, print1(a(n), ", "))
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^2*x)^k/(1-k^2*x))) \\ Seiichi Manyama, Dec 03 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 29 2014
EXTENSIONS
a(0)=1 prepended by Seiichi Manyama, Dec 03 2021
STATUS
approved