|
|
A328138
|
|
Numbers m divide 9^m + 8.
|
|
0
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Conjecture: For n > 1, k^n == 1-k (mod n) has an infinite number of positive solutions.
a(6) > 10^12. No term can be a multiple of 2, 3, 5, 7, or 13. Also terms: 228454543831049 and 4879573990210017348077958628152400091281634488825721395187. - Giovanni Resta, Oct 07 2019
|
|
LINKS
|
Table of n, a(n) for n=1..5.
|
|
PROG
|
(MAGMA) [1] cat [n: n in [1..10^8] | Modexp(9, n, n) + 8 eq n];
(PARI) isok(n) = Mod(9, n)^n==-8; \\ Michel Marcus, Oct 05 2019
|
|
CROSSREFS
|
Solutions to k^m == k-1 (mod m): 1 (k = 1), A006521 (k = 2), A015973 (k = 3), A327840 (k = 4), A123047 (k = 5), A327943 (k = 6), A328033 (k = 7), A327468 (k = 8), this sequence (k = 9).
Cf. A253212 (9^n + 8).
Sequence in context: A308490 A249459 A191963 * A351181 A351769 A139091
Adjacent sequences: A328135 A328136 A328137 * A328139 A328140 A328141
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Juri-Stepan Gerasimov, Oct 04 2019
|
|
STATUS
|
approved
|
|
|
|