The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328135 Exponential 3-abundant numbers: numbers m such that esigma(m) >= 3m, where esigma(m) is the sum of exponential divisors of m (A051377). 2
 901800900, 1542132900, 1926332100, 2153888100, 2690496900, 2822796900, 3942584100, 4487660100, 4600908900, 5127992100, 6267888900, 6742052100, 7162236900, 7305120900, 8421732900, 8969984100, 9866448900, 10203020100, 10718460900, 11723411700, 11787444900, 12528324900 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Aiello et al. found bounds on e-multiperfect numbers, i.e., numbers m such that esigma(m) = k * m for k > 2: 2 * 10^7 for k = 3, and 10^85, 10^320, and 10^1210 for k = 4, 5, and 6. The data of this sequence raise the bound for exponential 3-perfect numbers to 3 * 10^10. The least odd term is (59#/2)^2 = 924251841031287598942273821762233522616225. The least term which is coprime to 6 is (239#/6)^2 = 3.135... * 10^190. The least exponential 4-abundant number (esigma(m) >= 4m) is (31#)^2 = 40224510201185827416900. In general, the least exponential k-abundant number (esigma(m) >= k*m), for k > 2, is (A002110(A072986(k)))^2. LINKS Amiram Eldar, Table of n, a(n) for n = 1..47 W. Aiello, G. E. Hardy, and M. V. Subbarao, On the existence of e-multiperfect numbers,  Fibonacci Quarterly, Vol. 25 (1987), pp. 65-71. MATHEMATICA f[p_, e_] := DivisorSum[e, p^# &]; esigma = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^10], esigma[#] >= 3 # &] CROSSREFS Cf. A002110, A051377, A072986, A129575, A321147. Cf. A023197, A307112, A285615 (unitary), A293187 (bi-unitary), A300664 (infinitary). Sequence in context: A210299 A178557 A157798 * A189229 A051470 A076135 Adjacent sequences:  A328132 A328133 A328134 * A328136 A328137 A328138 KEYWORD nonn AUTHOR Amiram Eldar, Oct 04 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 29 12:57 EDT 2022. Contains 357090 sequences. (Running on oeis4.)