login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A328132
Exponential (2,3)-perfect numbers: numbers m such that esigma(esigma(m)) = 3m, where esigma(m) is the sum of exponential divisors of m (A051377).
1
300, 2100, 3300, 3900, 5100, 5700, 6900, 8700, 9300, 11100, 12100, 12300, 12900, 14100, 15900, 17700, 18300, 20100, 21300, 21900, 23100, 23700, 23760, 24900, 26700, 27300, 29100, 30300, 30900, 32100, 32700, 33900, 35700, 38100, 39300, 39900, 41100, 41700, 42900
OFFSET
1,1
REFERENCES
József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 53.
LINKS
J. Hanumanthachari, V. V. Subrahmanya Sastri, and V. Srinivasan, On e-perfect numbers, Math. Student, Vol. 46, No. 1 (1978), pp. 71-80; entire issue.
FORMULA
300 is in the sequence since esigma(300) = 540, and esigma(540) = 900 = 3*300.
MATHEMATICA
f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; espQ[n_] := esigma[esigma[n]] == 3n; Select[Range[50000], espQ]
PROG
(PARI) esigma(n) = {my(f = factor(n)); prod(k = 1, #f~, sumdiv(f[k, 2], d, f[k, 1]^d)); }
isok(k) = esigma(esigma(k)) == 3*k; \\ Amiram Eldar, Jan 09 2025
CROSSREFS
The exponential version of A019281.
Sequence in context: A237773 A188252 A128391 * A234412 A234406 A092715
KEYWORD
nonn
AUTHOR
Amiram Eldar, Oct 04 2019
STATUS
approved