login
A328140
Total number of nodes in all self-avoiding planar walks starting at (0,0), ending at (n,0), not extending above the line (x,2x) or below the line (x,-2x), and using steps (0,1), (-1,1), and (1,-1) with the restriction that (-1,1) and (1,-1) are always immediately followed by (0,1).
2
1, 2, 8, 22, 81, 260, 854, 2738, 8710, 27550, 86696, 271726, 848681, 2642662, 8207726, 25434686, 78663773, 242865100, 748650655, 2304552576, 7085109570, 21757557324, 66745430284, 204559349854, 626379255199, 1916485240548, 5859359429380, 17901726707224
OFFSET
0,2
MAPLE
b:= proc(x, y, t) option remember; (p-> p+[0, p[1]])(`if`(x<0
or abs(y)>2*x, 0, `if`(x=0, [1, 0], b(x-1, y, 1)+
`if`(t=1, b(x-1, y+1, 0)+b(x+1, y-1, 0), 0))))
end:
a:= n-> b(n, 0$2)[2]:
seq(a(n), n=0..32);
MATHEMATICA
b[x_, y_, t_] := b[x, y, t] = Function[p, p + {0, p[[1]]}][If[x < 0 || Abs[y] > 2x, {0, 0}, If[x == 0, {1, 0}, b[x - 1, y, 1] + If[t == 1, b[x - 1, y + 1, 0] + b[x + 1, y - 1, 0], 0]]]];
a[n_] := b[n, 0, 0][[2]];
a /@ Range[0, 32] (* Jean-François Alcover, May 13 2020, after Maple *)
CROSSREFS
Cf. A328139.
Sequence in context: A121135 A183410 A072929 * A053958 A300370 A191643
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Oct 04 2019
STATUS
approved