OFFSET
0,2
COMMENTS
Former title and formula of A122033, but not the data.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..800
FORMULA
a(n) = a(n-1) - (n-2)*a(n-2), with a(0)=1, a(1)=2.
E.g.f.: 1 + sqrt(2*e*Pi)*( erf(1/sqrt(2)) + erf((x-1)/sqrt(2)) ), where erf(x) is the error function.
a(n) = 2*(-1)^(n-1)*A001464(n-1).
a(n) = 2*(1/sqrt(2))^(n-1) * Hermite(n-1, 1/sqrt(2)), n > 0.
MAPLE
a:= proc (n) option remember;
if n < 2 then n+1
else a(n-1) - (n-2)*a(n-2)
fi;
end proc; seq(a(n), n = 0..35);
MATHEMATICA
a[n_]:= a[n]= If[n<2, n+1, a[n-1]-(n-2)*a[n-2]]; Table[a[n], {n, 0, 35}]
PROG
(PARI) my(m=35, v=concat([1, 2], vector(m-2))); for(n=3, m, v[n] = v[n-1] - (n-3)*v[n-2] ); v
(Magma) I:=[1, 2]; [n le 2 select I[n] else Self(n-1) - (n-3)*Self(n-2): n in [1..35]];
(Sage)
def a(n):
if n<2: return n+1
else: return a(n-1) - (n-2)*a(n-2)
[a(n) for n in (0..35)]
(GAP) a:=[1, 2];; for n in [3..35] do a[n]:=a[n-1]-(n-3)*a[n-2]; od; a;
CROSSREFS
KEYWORD
sign
AUTHOR
G. C. Greubel, Oct 04 2019
STATUS
approved