login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122033 a(n) = 2*a(n-1) - 2*(n-2)*a(n-2), with a(0)=1, a(1)=2. 2
1, 2, 4, 4, -8, -40, -16, 368, 928, -3296, -21440, 16448, 461696, 561536, -9957632, -34515200, 209783296, 1455022592, -3803020288, -57076808704, 22755112960, 2214428956672, 3518653394944, -85968709390336, -326758168158208, 3301044295639040, 22286480662872064 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..725

FORMULA

a(n) = 2*a(n-1) - 2*(n-2)*a(n-2), with a(0)=1, a(1)=2. - G. C. Greubel, Oct 04 2019

a(n) = 2*A062267(n-1) for n > 0. - Michel Marcus, Oct 05 2019

E.g.f.: 1 + exp(1)*sqrt(Pi)*( erf(1) - erf(1-x) ), where erf(x) is the error function. - G. C. Greubel, Oct 05 2019

MAPLE

a:= proc(n) option remember;

      if n < 2 then n+1

    else 2*(a(n-1) - (n-2)*a(n-2))

      fi

    end proc:

seq(a(n), n = 0..35); # G. C. Greubel, Oct 04 2019

MATHEMATICA

a[n_]:= a[n]= If[n<2, n+1, a[n-1]-(n-2)*a[n-2]]; Table[a[n], {n, 0, 30}] (* modified by G. C. Greubel, Oct 04 2019 *)

PROG

(PARI) my(m=35, v=concat([1, 2], vector(m-2))); for(n=3, m, v[n] = 2*(v[n-1] - (n-3)*v[n-2] ) ); v \\ G. C. Greubel, Oct 04 2019

(MAGMA) I:=[1, 2]; [n le 2 select I[n] else 2*(Self(n-1)-(n-3)*Self(n-2)): n in [1..35]]; // G. C. Greubel, Oct 04 2019

(Sage)

def a(n):

    if n<2: return n+1

    else: return 2*(a(n-1) - (n-2)*a(n-2))

[a(n) for n in (0..35)] # G. C. Greubel, Oct 04 2019

(GAP) a:=[1, 2];; for n in [3..35] do a[n]:=2*(a[n-1]-(n-3)*a[n-2]); od; a; # G. C. Greubel, Oct 04 2019

CROSSREFS

Cf. A000898, A121966, A328141.

Sequence in context: A296229 A322175 A298117 * A281122 A201777 A096189

Adjacent sequences:  A122030 A122031 A122032 * A122034 A122035 A122036

KEYWORD

sign,less

AUTHOR

Roger L. Bagula, Sep 13 2006

EXTENSIONS

Edited by N. J. A. Sloane, Sep 17 2006

Corrected and offset changed by G. C. Greubel, Oct 04 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 8 16:31 EDT 2022. Contains 356016 sequences. (Running on oeis4.)