login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122032
Product of the first n 3-almost primes, divided by product of the first n primes, rounded down.
3
4, 16, 57, 164, 403, 870, 1535, 3393, 6492, 10075, 16250, 22837, 35092, 53862, 77929, 102925, 130837, 163010, 189773, 245903, 330117, 413691, 508391, 599788, 680172, 767719, 864615, 945420, 1075524, 1189739, 1217843, 1282919, 1376563, 1465693, 1505040
OFFSET
1,1
COMMENTS
Note that this is nonmonotonic. What is the asymptotic value of the ratio A112141(n)/A002110(n)?
Probably it can be easily proved that a(n) = 0 for n >= 116. - Giovanni Resta, Jun 13 2016
LINKS
FORMULA
a(n) = floor(A114425(n)/A002110(n)) = floor(Prod(i=1..n)3almostprime(i)/Prod(i=1..n)prime(i)) = floor(Prod(i=1..n)A014612(i)/Prod(i=1..n)A000040(i)) = floor(Prod(i=1..n)(A014612(i)/A000040(i))).
EXAMPLE
a(1) = floor(8/2) = floor(4) = 4.
a(2) = floor(96/6) = floor(4) = 16.
a(3) = floor(1728/30) = floor(57.6) = 57.
a(4) = floor(34560/210) = floor(164.571429) = 164.
a(5) = floor(933120/2310) = floor(403.948052) = 403.
a(6) = floor(26127360/30030) = floor(870.041958) = 870.
a(7) = floor(783820800/510510) = floor(1535.36816) = 1535.
a(8) = floor(32920473600/9699690) = floor(3393.97172) = 3393.
a(9) = floor(1448500838400/223092870) = floor(6492.81547) = 6492.
a(10) = floor(65182537728000/6469693230) = floor(10075.058) = 10075.
a(11) = floor(3259126886400000/200560490130) = floor(16250.0943) = 16250.
a(12) = floor(169474598092800000/7420738134810) = floor(22837.9704) = 22837.
MATHEMATICA
tp = Select[Range[1000], PrimeOmega[#] == 3 &]; m = 1; Table[ Floor[m *= tp[[i]] / Prime[i]], {i, Length@ tp}] (* Giovanni Resta, Jun 13 2016 *)
Floor[#[[1]]/#[[2]]]&/@Module[{nn=200, tap, len}, tap=FoldList[ Times, Select[ Range[ nn], PrimeOmega[#]==3&]]; len=Length[tap]; Thread[{tap, FoldList[Times, Prime[ Range[len]]]}]] (* Harvey P. Dale, Sep 08 2019 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Oct 14 2006
EXTENSIONS
a(10) corrected by and a(13)-a(35) from Giovanni Resta, Jun 13 2016
STATUS
approved