login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A122032
Product of the first n 3-almost primes, divided by product of the first n primes, rounded down.
3
4, 16, 57, 164, 403, 870, 1535, 3393, 6492, 10075, 16250, 22837, 35092, 53862, 77929, 102925, 130837, 163010, 189773, 245903, 330117, 413691, 508391, 599788, 680172, 767719, 864615, 945420, 1075524, 1189739, 1217843, 1282919, 1376563, 1465693, 1505040
OFFSET
1,1
COMMENTS
Note that this is nonmonotonic. What is the asymptotic value of the ratio A112141(n)/A002110(n)?
Probably it can be easily proved that a(n) = 0 for n >= 116. - Giovanni Resta, Jun 13 2016
LINKS
FORMULA
a(n) = floor(A114425(n)/A002110(n)) = floor(Prod(i=1..n)3almostprime(i)/Prod(i=1..n)prime(i)) = floor(Prod(i=1..n)A014612(i)/Prod(i=1..n)A000040(i)) = floor(Prod(i=1..n)(A014612(i)/A000040(i))).
EXAMPLE
a(1) = floor(8/2) = floor(4) = 4.
a(2) = floor(96/6) = floor(4) = 16.
a(3) = floor(1728/30) = floor(57.6) = 57.
a(4) = floor(34560/210) = floor(164.571429) = 164.
a(5) = floor(933120/2310) = floor(403.948052) = 403.
a(6) = floor(26127360/30030) = floor(870.041958) = 870.
a(7) = floor(783820800/510510) = floor(1535.36816) = 1535.
a(8) = floor(32920473600/9699690) = floor(3393.97172) = 3393.
a(9) = floor(1448500838400/223092870) = floor(6492.81547) = 6492.
a(10) = floor(65182537728000/6469693230) = floor(10075.058) = 10075.
a(11) = floor(3259126886400000/200560490130) = floor(16250.0943) = 16250.
a(12) = floor(169474598092800000/7420738134810) = floor(22837.9704) = 22837.
MATHEMATICA
tp = Select[Range[1000], PrimeOmega[#] == 3 &]; m = 1; Table[ Floor[m *= tp[[i]] / Prime[i]], {i, Length@ tp}] (* Giovanni Resta, Jun 13 2016 *)
Floor[#[[1]]/#[[2]]]&/@Module[{nn=200, tap, len}, tap=FoldList[ Times, Select[ Range[ nn], PrimeOmega[#]==3&]]; len=Length[tap]; Thread[{tap, FoldList[Times, Prime[ Range[len]]]}]] (* Harvey P. Dale, Sep 08 2019 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Oct 14 2006
EXTENSIONS
a(10) corrected by and a(13)-a(35) from Giovanni Resta, Jun 13 2016
STATUS
approved