login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of the first n 3-almost primes, divided by product of the first n primes, rounded down.
3

%I #9 Sep 08 2019 13:07:42

%S 4,16,57,164,403,870,1535,3393,6492,10075,16250,22837,35092,53862,

%T 77929,102925,130837,163010,189773,245903,330117,413691,508391,599788,

%U 680172,767719,864615,945420,1075524,1189739,1217843,1282919,1376563,1465693,1505040

%N Product of the first n 3-almost primes, divided by product of the first n primes, rounded down.

%C Note that this is nonmonotonic. What is the asymptotic value of the ratio A112141(n)/A002110(n)?

%C Probably it can be easily proved that a(n) = 0 for n >= 116. - _Giovanni Resta_, Jun 13 2016

%H Giovanni Resta, <a href="/A122032/b122032.txt">Table of n, a(n) for n = 1..250</a>

%F a(n) = floor(A114425(n)/A002110(n)) = floor(Prod(i=1..n)3almostprime(i)/Prod(i=1..n)prime(i)) = floor(Prod(i=1..n)A014612(i)/Prod(i=1..n)A000040(i)) = floor(Prod(i=1..n)(A014612(i)/A000040(i))).

%e a(1) = floor(8/2) = floor(4) = 4.

%e a(2) = floor(96/6) = floor(4) = 16.

%e a(3) = floor(1728/30) = floor(57.6) = 57.

%e a(4) = floor(34560/210) = floor(164.571429) = 164.

%e a(5) = floor(933120/2310) = floor(403.948052) = 403.

%e a(6) = floor(26127360/30030) = floor(870.041958) = 870.

%e a(7) = floor(783820800/510510) = floor(1535.36816) = 1535.

%e a(8) = floor(32920473600/9699690) = floor(3393.97172) = 3393.

%e a(9) = floor(1448500838400/223092870) = floor(6492.81547) = 6492.

%e a(10) = floor(65182537728000/6469693230) = floor(10075.058) = 10075.

%e a(11) = floor(3259126886400000/200560490130) = floor(16250.0943) = 16250.

%e a(12) = floor(169474598092800000/7420738134810) = floor(22837.9704) = 22837.

%t tp = Select[Range[1000], PrimeOmega[#] == 3 &]; m = 1; Table[ Floor[m *= tp[[i]] / Prime[i]], {i, Length@ tp}] (* _Giovanni Resta_, Jun 13 2016 *)

%t Floor[#[[1]]/#[[2]]]&/@Module[{nn=200,tap,len},tap=FoldList[ Times, Select[ Range[ nn],PrimeOmega[#]==3&]];len=Length[tap];Thread[{tap, FoldList[Times, Prime[ Range[len]]]}]] (* _Harvey P. Dale_, Sep 08 2019 *)

%Y Cf. A000040, A014612, A002110, A112141, A123389.

%K easy,nonn

%O 1,1

%A _Jonathan Vos Post_, Oct 14 2006

%E a(10) corrected by and a(13)-a(35) from _Giovanni Resta_, Jun 13 2016