login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249458 The numerators of curvatures of touching circles inscribed in a special way in the smaller segment of unit circle divided by a chord of length sqrt(84)/5. 4
10, 100, 1690, 36100, 835210, 19802500, 472931290, 11318832100, 271066588810, 6492762648100, 155527144782490, 3725543446072900, 89243180863948810, 2137770243127864900, 51209104645650371290, 1226685938180259902500 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
The denominators are conjectured to be A169634.
Refer to comments and links of A240926. Consider a unit circle with a chord of length sqrt(84)/5. This has been chosen such that the smaller sagitta has length 3/5. The input, besides the circle C, is the circle C_0 with radius R_0 = 3/10, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the condition that C_n touches i) the circle C, ii) the chord and iii) the circle C_(n-1). The numerator of circle curvatures C_n = 1/R_n, n >= 0, are conjectured to be a(n). If one considers the curvature of touching circles inscribed in the larger segment (sagitta length 7/5), the sequence would be A249457/A005032. See an illustration given in the link.
For the proof and the formula for the rational curvatures of the circles in the smaller segment see a comment under A249864. C_n = (5/(3*7))*(7*S(n, 26/7) - 13*S(n-1, 26/7) + 7), n>=0, with Chebyshev's S polynomials (A049310). - Wolfdieter Lang, Nov 08 2014
LINKS
Kival Ngaokrajang, Illustration of initial terms.
Eric Weisstein's World of Mathematics, Sagitta.
FORMULA
Empirical g.f.: -10*(70*x^2-23*x+1) / ((7*x-1)*(49*x^2-26*x+1)). - Colin Barker, Oct 29 2014
From Wolfdieter Lang, Nov 09 2014 (Start)
a(n) = 5*(A249864(n) + 7^n) = (5*7^n)*(S(n, 26/7) - (13/7)*S(n-1, 26/7) + 1), n >= 0, with Chebyshev's S polynomials (A049310). See the comments on A249864 for the proof.
O.g.f.: 5*((1 - 13*x)/(1 - 26*x + (7*x)^2) + 1/(1-7*x)) = 10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x)) proving the conjecture of Colin Barker above. (End)
MATHEMATICA
LinearRecurrence[{33, -231, 343}, {10, 100, 1690}, 16] (* Ray Chandler, Aug 11 2015 *)
CoefficientList[Series[10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
PROG
(PARI)
{
r=0.3; dn=3; print1(round(dn/r), ", "); r1=r;
for (n=1, 40,
if (n<=1, ab=2-r, ab=sqrt(ac^2+r^2));
ac=sqrt(ab^2-r^2);
if (n<=1, z=0, z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r)); r1=r);
b=acos(r/ab)-z;
r=r*(1-cos(b))/(1+cos(b)); dn=dn*7;
print1(round(dn/r), ", ");
)
}
(PARI) x='x+O('x^30); Vec(10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x))) \\ G. C. Greubel, Dec 20 2017
(Magma) I:=[10, 100, 1690]; [n le 3 select I[n] else 33*Self(n-1) - 231*Self(n-2) + 343*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
CROSSREFS
Sequence in context: A279016 A366647 A197130 * A249457 A173482 A173481
KEYWORD
nonn,frac,easy
AUTHOR
Kival Ngaokrajang, Oct 29 2014
EXTENSIONS
Edited. In name and comment small changes, keyword easy and crossrefs added. - Wolfdieter Lang, Nov 08 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 00:30 EDT 2024. Contains 371917 sequences. (Running on oeis4.)