login
A249863
Chebyshev S polynomial (A049310) evaluated at x = 26/7 and multiplied by powers of 7 (A000420).
3
1, 26, 627, 15028, 360005, 8623758, 206577463, 4948449896, 118537401609, 2839498396930, 68018625641339, 1629348845225244, 39030157319430733, 934945996889162102, 22396118210466108735, 536486719624549884112
OFFSET
0,2
COMMENTS
This sequence appears in the solution of the curvature sequence of the touching circle and chord example given by Kival Ngaokrajang in A249458. See also the pair A249864(n) and a(n-1), with a(-1) = 0, for which details are given in A249864.
FORMULA
a(n) = 7^n*S(n, 26/7) with Chebyshev's S polynomial (for S see the coefficient triangle A049310).
O.g.f.: 1/(1 - 26*x + (7*x)^2).
a(n) = 26*a(n-1) - 49*a(n-2), a(-1) = 0, a(0) = 1 .
MATHEMATICA
LinearRecurrence[{26, -49}, {1, 26}, 20] (* Harvey P. Dale, Jun 30 2017 *)
PROG
(Magma) I:=[1, 26]; [n le 2 select I[n] else 26*Self(n-1)-49*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 09 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 09 2014
STATUS
approved