login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249860
a(n) = Least common multiple of n + 3 and n - 3.
5
4, 5, 0, 7, 8, 9, 20, 55, 12, 91, 56, 45, 80, 187, 36, 247, 140, 105, 176, 391, 72, 475, 260, 189, 308, 667, 120, 775, 416, 297, 476, 1015, 180, 1147, 608, 429, 680, 1435, 252, 1591, 836, 585, 920, 1927, 336, 2107, 1100, 765, 1196, 2491, 432, 2695, 1400, 969
OFFSET
1,1
COMMENTS
The recurrence for the general case lcm(n+k, n-k) is a(n) = 3*a(n-2*k)-3*a(n-4*k)+a(n-6*k) for n>6*k.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,3,0,0,0,0,0,-3,0,0,0,0,0,1).
FORMULA
a(n) = 3*a(n-6)-3*a(n-12)+a(n-18) for n>18.
G.f.: x*(-10*x^19 -8*x^18 -3*x^17 -4*x^16 -5*x^15 +37*x^13 +32*x^12 +18*x^11 +32*x^10 +70*x^9 +12*x^8 +40*x^7 +8*x^6 +9*x^5 +8*x^4 +7*x^3 +5*x +4) / (-x^18 +3*x^12 -3*x^6 +1).
From Peter Bala, Feb 15 2019: (Start)
For n >= 3, a(n) = (n^2 - 9)/b(n), where (b(n)), n >= 3, is the periodic sequence [6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, ...] of period 6. a(n) is thus a quasi-polynomial in n
For n >= 4, a(n) = (n + 3)*A060789(n-3). (End)
Sum_{n>=4} 1/a(n) = 47/60. - Amiram Eldar, Aug 09 2022
Sum_{k=1..n} a(k) ~ 7*n^3/36. - Vaclav Kotesovec, Aug 09 2022
EXAMPLE
a(8) = 55 because lcm(8+3, 8-3) = lcm(11, 5) = 55.
MAPLE
A249860:=n->lcm(n+3, n-3): seq(A249860(n), n=1..100); # Wesley Ivan Hurt, Feb 12 2017
MATHEMATICA
CoefficientList[Series[(-10 x^19 - 8 x^18 - 3 x^17 - 4 x^16 -5 x^15 + 37 x^13 + 32 x^12 + 18 x^11 + 32 x^10 + 70 x^9 + 12 x^8 + 40 x^7 + 8 x^6 + 9 x^5 + 8 x^4 + 7 x^3 + 5 x + 4) / (- x^18 + 3 x^12 - 3 x^6 + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 08 2014 *)
Table[LCM @@ (n + {-3, 3}), {n, 54}] (* Michael De Vlieger, Feb 13 2017 *)
PROG
(PARI) a(n) = lcm(n+3, n-3)
(PARI) Vec(x*(-10*x^19 -8*x^18 -3*x^17 -4*x^16 -5*x^15 +37*x^13 +32*x^12 +18*x^11 +32*x^10 +70*x^9 +12*x^8 +40*x^7 +8*x^6 +9*x^5 +8*x^4 +7*x^3 +5*x +4) / (-x^18 +3*x^12 -3*x^6 +1) + O(x^100))
CROSSREFS
Cf. A066830 (k=1), A249859 (k=2), A060789.
Sequence in context: A319459 A318740 A240160 * A360962 A320162 A354068
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Nov 07 2014
STATUS
approved