login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Least common multiple of n + 3 and n - 3.
5

%I #30 Aug 10 2022 07:55:52

%S 4,5,0,7,8,9,20,55,12,91,56,45,80,187,36,247,140,105,176,391,72,475,

%T 260,189,308,667,120,775,416,297,476,1015,180,1147,608,429,680,1435,

%U 252,1591,836,585,920,1927,336,2107,1100,765,1196,2491,432,2695,1400,969

%N a(n) = Least common multiple of n + 3 and n - 3.

%C The recurrence for the general case lcm(n+k, n-k) is a(n) = 3*a(n-2*k)-3*a(n-4*k)+a(n-6*k) for n>6*k.

%H Colin Barker, <a href="/A249860/b249860.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,3,0,0,0,0,0,-3,0,0,0,0,0,1).

%F a(n) = 3*a(n-6)-3*a(n-12)+a(n-18) for n>18.

%F G.f.: x*(-10*x^19 -8*x^18 -3*x^17 -4*x^16 -5*x^15 +37*x^13 +32*x^12 +18*x^11 +32*x^10 +70*x^9 +12*x^8 +40*x^7 +8*x^6 +9*x^5 +8*x^4 +7*x^3 +5*x +4) / (-x^18 +3*x^12 -3*x^6 +1).

%F From _Peter Bala_, Feb 15 2019: (Start)

%F For n >= 3, a(n) = (n^2 - 9)/b(n), where (b(n)), n >= 3, is the periodic sequence [6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, ...] of period 6. a(n) is thus a quasi-polynomial in n

%F For n >= 4, a(n) = (n + 3)*A060789(n-3). (End)

%F Sum_{n>=4} 1/a(n) = 47/60. - _Amiram Eldar_, Aug 09 2022

%F Sum_{k=1..n} a(k) ~ 7*n^3/36. - _Vaclav Kotesovec_, Aug 09 2022

%e a(8) = 55 because lcm(8+3, 8-3) = lcm(11, 5) = 55.

%p A249860:=n->lcm(n+3,n-3): seq(A249860(n), n=1..100); # _Wesley Ivan Hurt_, Feb 12 2017

%t CoefficientList[Series[(-10 x^19 - 8 x^18 - 3 x^17 - 4 x^16 -5 x^15 + 37 x^13 + 32 x^12 + 18 x^11 + 32 x^10 + 70 x^9 + 12 x^8 + 40 x^7 + 8 x^6 + 9 x^5 + 8 x^4 + 7 x^3 + 5 x + 4) / (- x^18 + 3 x^12 - 3 x^6 + 1), {x, 0, 50}], x] (* _Vincenzo Librandi_, Nov 08 2014 *)

%t Table[LCM @@ (n + {-3, 3}), {n, 54}] (* _Michael De Vlieger_, Feb 13 2017 *)

%o (PARI) a(n) = lcm(n+3, n-3)

%o (PARI) Vec(x*(-10*x^19 -8*x^18 -3*x^17 -4*x^16 -5*x^15 +37*x^13 +32*x^12 +18*x^11 +32*x^10 +70*x^9 +12*x^8 +40*x^7 +8*x^6 +9*x^5 +8*x^4 +7*x^3 +5*x +4) / (-x^18 +3*x^12 -3*x^6 +1) + O(x^100))

%Y Cf. A066830 (k=1), A249859 (k=2), A060789.

%K nonn,easy

%O 1,1

%A _Colin Barker_, Nov 07 2014