login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057010
Number of conjugacy classes of subgroups of index 4 in free group of rank n.
1
1, 26, 604, 14120, 334576, 7987616, 191318464, 4588288640, 110090411776, 2641931680256, 63404394241024, 1521689370306560, 36520413978750976, 876488875160477696, 21035724442850934784, 504857317670233210880
OFFSET
1,2
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.
LINKS
J. H. Kwak and J. Lee, Enumeration of connected graph coverings, J. Graph Th., 23 (1996), 105-109.
J. H. Kwak and J. Lee, Enumeration of graph coverings and surface branched coverings, Lecture Note Series 1 (2001), Com^2MaC-KOSEF, Korea. See chapter 3.
V. A. Liskovets, Reductive enumeration under mutually orthogonal group actions, Acta Applic. Math., 52 (1998), 91-120.
FORMULA
G.f.: x(1-12x)/((1-6x)(1-8x)(1-24x)).
a(n) = 24^(n-1)+8^(n-1)-6^(n-1).
PROG
(PARI) a(n)=if(n<0, 0, 24^(n-1)+8^(n-1)-6^(n-1))
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 09 2000
EXTENSIONS
More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001
STATUS
approved