OFFSET
1,1
COMMENTS
Let b(k)=sum(i=1,k,F(2*n*i)*binomial(k,i)) where F(k) denotes the k-th Fibonacci number. The (b(k)) sequence satisfies the recursion: b(k)=a(n)*(b(k-1)-b(k-2)).
Same as the number of Kekulé structures in polyphenanthrene in terms of the number of hexagons. - Parthasarathy Nambi, Aug 22 2006
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
I. Lukovits and D. Janezic, Enumeration of conjugated circuits in nanotubes, J. Chem. Inf. Comput. Sci. 44 (2004), 410-414. See Table 1 column 3 on page 411.
Index entries for linear recurrences with constant coefficients, signature (4,-4,1).
FORMULA
a(1)=5, a(2)=9, a(3)=20, a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3).
a(n) = 3 + floor((1+phi)^n) where phi = (1+sqrt(5))/2.
a(n) = A005248(n) + 2.
From R. J. Mathar, Mar 18 2009: (Start)
G.f.: -x*(5 - 11*x + 4*x^2)/((x-1)(x^2 - 3*x + 1)).
a(n+1) - a(n) = A002878(n). (End)
MATHEMATICA
CoefficientList[Series[-(5-11*x+4*x^2)/((x-1)(x^2-3*x+1)), {x, 0, 30}], x] (* Vincenzo Librandi, May 06 2012 *)
PROG
(Magma) I:=[5, 9, 20]; [n le 3 select I[n] else 4*Self(n-1)-4*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, May 06 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Mar 20 2004
EXTENSIONS
Better definition from Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 20 2004
STATUS
approved