|
|
A087940
|
|
a(n) = Sum_{k=0..n} binomial(n+(-1)^k, k).
|
|
1
|
|
|
1, 5, 9, 20, 39, 80, 159, 320, 639, 1280, 2559, 5120, 10239, 20480, 40959, 81920, 163839, 327680, 655359, 1310720, 2621439, 5242880, 10485759, 20971520, 41943039, 83886080, 167772159, 335544320, 671088639, 1342177280, 2684354559, 5368709120, 10737418239
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
For n>1 a(n) = 5*2^(n-2)-(1-(-1)^n)/2.
For n>4 a(n) = 2*a(n-1)+a(n-2)-2*a(n-3).
G.f.: -x*(x^3+2*x^2-3*x-1) / ((x-1)*(x+1)*(2*x-1)). (End)
|
|
MATHEMATICA
|
Join[{1}, LinearRecurrence[{2, 1, -2}, {5, 9, 20}, 40]] (* Harvey P. Dale, Feb 03 2015 *)
|
|
PROG
|
(PARI) a(n) = sum(k=0, n, binomial(n+(-1)^k, k)); \\ Michel Marcus, Dec 06 2013
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|