OFFSET
1,3
LINKS
Felix Huber, Table of n, a(n) for n = 1..5000
Eric Weisstein's World of Mathematics, Fundamental Theorem of Arithmetic
FORMULA
a(n) = binomial(pi(n) + n - 1, n) where pi = A000720.
EXAMPLE
a(2) = 1 because 1 positive integer has 2 prime factors <= 2: 4 = 2*2.
a(3) = 4 because 4 positive integers have 3 prime factors <= 3: 8 = 2*2*2, 12 = 2*2*3, 18 = 2*3*3, 27 = 3*3*3.
a(4) = 5 because 5 positive integers have 4 prime factors <= 4: 16 = 2*2*2*2, 24 = 2*2*2*3, 36 = 2*2*3*3, 54 = 2*3*3*3, 81 = 3*3*3*3.
MATHEMATICA
a[n_]:= Binomial[PrimePi[n] + n - 1, n]; Array[a, 35] (* Stefano Spezia, Nov 04 2024 *)
PROG
(PARI) a(n) = binomial(primepi(n) + n - 1, n); \\ Michel Marcus, Nov 05 2024
(Python)
from math import comb
from sympy import primepi
def A377537(n): return comb(primepi(n)+n-1, n) # Chai Wah Wu, Nov 12 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Huber, Nov 04 2024
STATUS
approved