login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377530
Expansion of e.g.f. 1/(1 - x * exp(x))^3.
2
1, 3, 18, 141, 1380, 16095, 217458, 3335745, 57225528, 1085066523, 22526087070, 508042140573, 12367076890644, 323130848000727, 9018976230237834, 267789942962863065, 8427492557547704688, 280194087519310655667, 9813332205452943323190, 361109786425470021564021
OFFSET
0,2
FORMULA
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(k+2,2)/(n-k)!.
a(n) ~ n! * n^2 / (2 * (1+LambertW(1))^3 * LambertW(1)^n). - Vaclav Kotesovec, Oct 31 2024
PROG
(PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(k+2, 2)/(n-k)!);
CROSSREFS
Cf. A377504.
Sequence in context: A186266 A260506 A193237 * A325996 A364417 A378891
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Oct 30 2024
STATUS
approved