login
A377504
E.g.f. satisfies A(x) = 1/(1 - x * exp(x) * A(x))^3.
4
1, 3, 36, 735, 21972, 871995, 43308378, 2588123811, 180990517032, 14507325973395, 1311719669172750, 132102208441613883, 14666354372331521676, 1779817542971018697003, 234399632982398657764578, 33297612755940733707395955, 5075234637265322738651060688, 826215756199826873368252279971
OFFSET
0,2
FORMULA
E.g.f.: B(x)^3, where B(x) is the e.g.f. of A364987.
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(4*k+2,k)/( (k+1)*(n-k)! ).
PROG
(PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(4*k+2, k)/((k+1)*(n-k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 30 2024
STATUS
approved