login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A377527
E.g.f. satisfies A(x) = 1/(1 - x * exp(x) * A(x)^2)^2.
2
1, 2, 26, 618, 22256, 1081770, 66401532, 4931389358, 430108545680, 43104305664594, 4881518010253460, 616559703960596022, 85935621525038617752, 13102417265843584412474, 2169337115977056447577820, 387609934848899388554651550, 74340899731294447790784890912
OFFSET
0,2
FORMULA
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A377526.
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(5*k+1,k)/( (2*k+1)*(n-k)! ).
PROG
(PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(5*k+1, k)/((2*k+1)*(n-k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 30 2024
STATUS
approved